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The n-variable Fokker-Planck equation can be written in an equivalent form as 
a system of n + 1 first-order equations by introducing as auxiliary variables the 
components of the drift velocity R,. The stationary state defines a stationary R 
uniquely, which allows an intrinsic classification of the stationary states in terms 
of the properties of R, without reference to detailed balance. This representation 
is very appropriate for the study of questions such as the existence of stationary 
states and their small and large noise asymptotics, as well as for the construc- 
tion of models having some specified behavior. R provides also a classification 
of the dynamics, which corresponds to the hermiticity properties of the 
associated eigenvalue problem. 

KEY WORDS:  Fokker-Planck equation; drift velocity; detailed balance; 
nonequilibrium. 

1. I N T R O D U C T I O N  

The Fokker-Planck equation can be used as a model for a wide variety of 
fluctuating macroscopic systems. (1 4/Detailed balance is a property of the 
stationary state defined with respect to a time-reversal transformation. It 
presupposes the assignment of specific time-reversal signatures to the 
variables of the system, which reflect the nature of the underlying physical 
system. The concept of detailed balance is useful in many contexts. If a 
system is in detailed balance, the stationary state can be obtained directly 
by quadratures. It is a covariant property, i.e., independent of the choice of 
coordinates. However, as a classification criterion it has some problems: 
since it is defined with respect to some given time-reversal signatures, it is 
bounded to an interpretation of the macroscopic variables; a stationary 
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state can be in detailed balance with respect to one interpretation and not 
for another one, although the equation is the same in both cases. Detailed 
balance was known to be equivalent to the potential conditions of Graham 
and Haken. (5'6) R. Graham showed later ~7'8) that they are satisfied for all 
Fokker-Planck models, and every stationary state is formally in detailed 
balance with respect to some time reversal transformation. In fact the 
potential conditions are equivalent to the Fokker-Planck equation. Thus in 
many instances it is useful to have a more precise criterion. We consider an 
alternative classification criterion, based on the properties of the stationary 
drift velocity R u, which is uniquely defined by the stationary state. This 
classification is independent of the coordinates and of the interpretation of 
the variables (i.e., of time reversal). It coincides in one case with the one 
based on detailed balance. The study of the properties of R ~ gives also 
useful information on the structure of the Fokker-Planck models, for the 
stationary state and for the dynamics. It allows, e.g., to identify a new class 
of models for which the stationary state can be found explicitly. 

The paper is organized as follows: after giving some notation and 
introducing the covariant formulation of the Fokker-Planck equation, we 
present in Section 2 three equivalent representations of the Fokker-Planck 
equation, on which we base the rest of the discussion. In Section 3 we dis- 
cuss the dynamical-matrix formalism and observe that it includes all 
models having a stationary state. In Section4 we give an intrinsic 
classification of stationary states, based on the behavior of the drift velocity 
R ", and discuss the properties of the different cases. We find a method to 
determine to which class a given model belongs and how to construct 
models having specified properties. We treat as an example a family of 
models that undergo a Hopf  bifurcation into a limit cycle and contains the 
stochastic van der Pol oscillator as a special case. We conclude, e.g., that 
for systems in equilibrium one must require V~,R ~ = 0. In Section 5 we give 
some results on the small and large noise asymptotics in relation with the 
foregoing classification. In Section 6 we discuss how the properties of R ~ 
relate to the dynamics through the hermiticity properties of the associated 
Fokker-Planck operator. 

We will use the following notation: We consider the Fokker-Planck 
equation (FP) in n variables q - ( q l  . . . . .  qn) in a simply connected domain 
Q c ~  = 

c3,P,(q) = -~3,[KU(q) P,(q)]  + l(?uc3v[qOUV(q) P,(q)]  (1.1) 

where c~, = O/c~t, 0~ = O/~q ~. The summation convention applies for repeated 
indices. We will also use ~?~b- (01~b,..., ~?n~b). We will distinguish the time- 
dependent quantities (e.g., ~bt) from the corresponding stationary ones 
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(e.g., ~b) by a subscript t. The positive parameter n. appearing in the dif- 
fusion tensor Q,V= r /~v (positive, symmetric) measures the strength of the 
fluctuations. In equilibrium it can be identified with the Boltzmann con- 
stant k~. For simplicity we assume that Q~V has an inverse Q~,. We choose 
vanishing boundary conditions for P,, its derivatives, and the probability 
current. Since P,(q)~> 0 we can write it as 

P,(q) = e ~t(q) (1.2) 

The vanishing boundary conditions for Pt correspond to ~b r becoming 
infinite at the boundaries. 

Since we are interested in properties that do not depend on the choice 
of coordinates, we formulate the FP equation in a covariant form. (9) 
Introducing the scalar 

S , = - [ Q l l / 2 p , - e  ~ '=e  ~bt+(l/2)lnlOl (1.3) 

where ] Q[ = det(Q ~); the contravariant drift 

1 Q~ 
h"=- K ~ -~ 1QI1/2 0~ IQI~/---- ~ (1.4) 

and the covariant derivative (notation V~) the covariant FP equation ~9~ is 

O,S, = - V ~ [ h ~ S , ]  + �89 (1.5) 

We remark that since V~Q~"=0, Eq. (1.5) is of the same form as (1.1) in 
the case 3 ~ Q ~ = 0  (i.e., q-independent diffusion), if one makes the sub- 
stitutions Pr ~ S,, 3~ ~ V~, K ~  h ~. Therefore many results obtained for 
(1.1) in the case 3~ Q ~ =  0 by formal procedures, can be generalized to the 
case of q-dependent Q"~' by repeating the analogous procedures on 
Eq. (1.5) (one must take into account that the covariant derivatives V,, V~ 
do not commute when applied on vectors). We also remark that if in a 
coordinate system Q~ is constant, Eq. (1.5) in this coordinates reduces to 
Eq. (1.1). 

We will consider time-reversal transformations ~ acting on the 
variables q and on external parameters A = (A~,..., AP) ~9~ 

~: q~ -~ ~ = t~q ~ 
(1.6) 

Ai-.+ .~i= s~A J 

with 

t~t~=~, ' J -  ' (1.7) v , s)sk - ~k 
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The tensors t~ and sj can be diagonalized by choosing appropriate coor- 
dinates. They have eigenvalues e~= _1 and a~= _1, respectively, which 
are the signatures of the corresponding coordinates and parameters with 
respect to ~. 

Detailed balance with respect to z is defined by the condition on the 
two-time probability density 

Wz(q', t'; q, t; A) = W2(O, t'; ~', t; A) 

and is a coordinate independent property. 
We distinguish three types of detailed balance: 

db(1 ): 
db(2): 

db(3): 

(1.8) 

All the e~ and a~ are + 1. The process is balanced locally. 
Some of the e ~ are - 1 but all the ~ are + 1. The balance is 
nonlocal. 
There are some a ~ = - 1 .  The balance does not reflect a 
process of the system since it involves changing external 
parameters. 

2. E Q U I V A L E N T  F O R M S  OF THE F O K K E R - P L A N C K  
E Q U A T I O N  

The FP Eq. (1.5) is a linear second-order partial differential equation, 
and second-order nonlinear as an equation ford. By introducing n 
auxiliary functions R~(q) we can write it as a system of n + 1 first-order 
equations (2.1) that will be the basis of all further analysis. We give also 
two other equivalent systems that will be used later. 

The three following systems are equivalent to the FP Eq. (1.5): 

i R~ h ~ •  q~, (2.1a) ~ 2 - ~ ,  - - v  

(a)  6t~, + Rf V~q~, = V~R~ (2.1b) 

i R~ = h . + �89 Vvq~, (2.2a) 
(B) ~?,~t+H(q,V~t)=V~R~ (2.2b) 

with H(q,V~t)=�89 Vv~+h~V~ (2.3) 

l + ~Q Vv~bt (2.4a) Rf  = h  ~ 1 ,v - 

( c )  a,~, + R ;  v ~ , - ~  ~ - - ~ Q  V~V~b, + Vvh v (2.4b) 

To show this we write the FP Eq. (1.5) as a continuity equation 

0,S, = -V~J~ (2.5) 
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with 

J~, = hF'S, --  �89 Vv S ,  

= (h# ~ + �89 Vvq~,) St  - R~,St (2.6) 

This defines the drift velocity R~ and coincides with Eq. (2.1a). Inserted 
into (2.5) it gives 

~?,~t = - R ~  V~d, + V~R, ~ (2.7) 

which coincides with (2.1b). 
We remark that in any coordinate system, R ~ is given by 

R," = K" + �89 ~b,- • (2.8) 

which, as it is easily verified, is a covariant expression; i.e., the drift velocity 
defined in any coordinate system is identical with its covariant counterpart. 
We also remark that R~ is uniquely defined for all t, as follows from 
Eq. (2.8) and the uniqueness of ~b, for given initial and boundary con- 
ditions. 

For the equivalence with the two other systems we notice that (2.2b) is 
obtained by inserting (2.1a) into the left side of (2.1b), while insertion into 
the right side gives (2.4b). As we will see later, the forms (B) and (C) are 
useful for the study of the small and large noise asymptotics, respectively. 
We notice from (2.8) that the knowledge of ~b, gives R, u immediately, and ~b t 
can be obtained from R~ by integration. 

The system (2.1) corresponds to the time-dependent generalization of 
the potential conditions of Graham and HakenJ 5"6~ Its equivalence to the 
FP equation is the origin of the observation that every stationary state is in 
detailed balance db(3) with respect to some time-reversal transformation. ~7) 

3. S T A T I O N A R Y  S T A T E S  

One knows (1~ under fairly general conditions, the time-depen- 
dent solutions Pt of the FP Eq. (1.1) approach a stationary state P ~  if and 
only if the stationary FP  equation has a normalized solution P. In that 
case Po~ = P is unique. For the stationary FP  equation we can formulate 
equivalent systems of equations corresponding to (2.1)-(2.4), just by sub- 
stituting q~t and R, ~ by q~ and R ~ and dropping the terms O,q~,; e.g., 

R ~ = h ~ + �89 Vvq~ (3.1a) 

R~V~q~=V,R ~ (3.1b) 
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We want to discuss some properties that characterize the h ~ for which the 
FP Eq. (1.5) has a stationary state. We start by reinterpreting the 
dynamical-matrix formalism developed by C. P. Enz. (12) Let QUa(q) and 
~(q) be given, satisfying the necessary regularity and boundary conditions. 
We want to determine all the covariant drifts h v for which ~ is the 
stationary state. We define 

/)~ = - �89 V~6 = h u -- R" (3.2) 

and determine the general solution R~(q) of Eq. (3.1b), which is given 
by(25) 

(3.3) 

where d~(q)=-d~"(q) is any antisymmetric n x n matrix with C 2 coef- 
ficients. Thus h ~ will be of the form 

h ~ =/3u + R ~ = B .~ V v ~ -  V~B "~ 

where we have defined the dynamical matrix 

B ,,~ = -�89 + d ~) 

(3.4) 

(3.5) 

This implies, as mentioned, e.g., in Ref. 9, that a FP Eq. (1.5) defined 
by some h ~ and Q~V has a stationary state if and only if it can be written in 
the two following equivalent forms: 

(i) O,St= - V ~ , [ ( B ~ V ~ -  VvB"v) S,] +• (3.6) 

(ii) O , S , = - V v I B U ' ( - Y - - ~ - S , + V , S , )  ] (3.7) 

Equation (3.7) is the form of FP equation used by Green, Grabert, and 
Graham. (~3) Its equivalence with (3.6) is obtained by simple algebraic 
manipulation. This shows that this formalism u3) as well as the dynamical- 
matrix approach starts abinitio with the most general form of 
Fokker-Planck equation having a stationary state. Each particular model 
is characterized by a choice of q~, Q~V, and d ~v. This gives a very transparent 
method to construct models having some specified properties, q~ describes 
the stationary probability density, Q~V the diffusion, and d "v the convection 
properties. In Section 6 we will discuss the relation of this choices with the 
dynamics. Some general sufficient conditions on h ~ and Q~ for the system 
to have a stationary state are given in Ref. 14. 
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4. C L A S S I F I C A T I O N  OF S T A T I O N A R Y  S T A T E S  

We consider systems that have a stationary state. For given Q"U, h ~, 
the stationary state is uniquely characterized by q; or R ~. Since R ~ is con- 
travariant and defined independently of the interpretation given to the 
variables q, and in particular of any time-reversal transformation, we can 
use it for an intrinsic classification of stationary states. We will distinguish 
three cases: 

(I) R " = 0  (4.1) 

(II) VuR ~ = 0  (4.2) 

(III) V,R~ ~ 0  (4.3) 

This classification is independent of the choice of coordinates. It reflects 
both the mathematical structure of the equations and the physical nature of 
the involved processes. 

Case I. (a) R~=0,  the state is purely diffusive; the fluctuations 
relax without performing any collective motion. 

(b) The stationary FP equation reduces to 

h ~= - �89 Vv~ (4.4) 

and thus q~ can be determined by quadrature: 

~= - 2  fq'o Q~~h~ dl~. (4.5) 

(c) Conversely, if the integral (4.5) is well defined and independent of 
the path (and the corresponding P is normalizable), it implies R" = 0, since 
it satisfies (3.1) and we have uniqueness of the solution. Thus it can be 
tested a priori: R ~ = 0 if 

OB[Qxeh~ ] = Ox[Qpuh ~] (4.6) 

Here we use the assumption that s c ~n is simply connected, so that Poin- 
car6's lemma applies. For n = 1 the integral (4.5) is trivially independent of 
the path and therefore we always have R " =  0. 

(d) R~'= 0 if and only if the system is in db(1), i.e., detailed balance 
with all signatures (1.7) positive. This is the only case in which this 
classification coincides with detailed balance. One can see this property as 
follows: we define in general 

~RV(q,A)=l v A v ~ ~ ~[h (q, ) -  t~h (q~,.4)] (4.7) 
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where r is the time-reversal transformation (1.9). Detailed balance with 
respect to r is equivalent to the potential conditions (5'6) of R. Graham and 
H. Haken. By comparison with (3.1) and from the uniqueness of R" one 
sees that detailed balance is equivalent to 

(i) ~R " = R  ~ (4.8) 

(ii) Q~V(q)= t~t}Q~B(O) (4.9) 

Now, db(1) implies ~R~=0 and therefore R " = 0 .  Conversely, if R ~ = 0  
Eq. (3.1) is identical to the potential conditions corresponding to db(1). 

Case  II. (a) The condition V~R~=0 is equivalent to V ,~R~=0.  
R~= 0 is a special case and the following properties (b)-(h) also apply to 
it. If R ~ r 0, V ,R  ~= 0 = V~q~R ~ the relaxation has a diffusive and a convec- 
tive part, which is source free and happens along equipotential hypersur- 
faces. 

We remark that there always exist coordinate systems in which the 
divergence coincides with the covariant divergence, i.e., V~ V " = ~ V" for 
any vector V ~. This coordinates can even be constructed explicitly. (25) Thus 
if V~ R ~= 0 there are coordinates in which c3, R~= 0, and we could make all 
the following analysis in one of this coordinate systems. However, the con- 
verse is not true: it is possible that in some coordinate system c3,R"=0 
although V~R" r  Some of the following considerations can also be 
applied to this case [like, e.g., point (c)]. 

(b) The time-independent FP systems (2.2) and (2.4) simplify, 
respectively, to 

R ~ = h ~ + �89 V ~  (4.10a) 

H(q, Vq~) = 0 (4.10b) 

H(q, V~)= �89 V ~  V~qi+ h ~ V ~  (4.11) 

and 

R ~ = h ~ + �89 Vvq~ 

Q~V V ~ V ~  = -2Vv hv 

(4.12a) 

(4.12b) 

In both representations, the last equation (b) decouples from the rest of the 
system. Either (4.10b) or (4.12b), which are much simpler than the full FP 
equation, can be used to determine ~. (4.10b) has the form of a time- 
independent Hamilton-Jaeobi equation (H J), which can be reduced to a 
system of ordinary differential equations by the method of characteristics. 
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(4.12b) has the form of a generalized Poisson equation, which can be 
treated by Green's function methods. (15/ If V, RU=0 Eqs.(4.10b) and 
(4.12b) give another equivalent representation of the FP equation: as an 
equation for q~ the stationary FP Eq. (1.5) can be written 

�89 Vu~ Vv~ + h~ Vv~= • V~Vv~ + V~ (4.13) 

The left side corresponds to the HJ equation and the right side to the 
Poisson equation. Thus in the case V~R ~= 0 the FP equation is equivalent 
to 

H(q, Vq~) = 0 (4.14a) 

Q~v V,V~q~= -2Vvh v (4.14b) 

As we will see in Section 5, the HJ equation can be associated with the 
small-noise limit, and the Poisson equation with the large-noise limit. 

(c) We do not have a criterion to determine, for given h v, Quv, 
apriori, if V ~ R " = 0  (i.e., without finding q~ first). However, since the 
Poisson equation (4.14b) is known to have regular solutions under general 
conditions (15) and it can be solved explicitly in many instances, we can 
proceed as follows: after checking that R u ~ 0  we try to determine the 
general solution of (4.14b) satisfying the boundary conditions. For exam- 
ple, if h ~ and Q~V are polynomial and (2 = ~ ,  (4.14b) can be solved by a 
polynomial ansatz, whose coefficients are determined by linear algebraic 
equations. If this general solution contains a special solution that also 
satisfies (4.14a) (which can be checked by insertion) it gives us the 
stationary state, and it will be of type (II). If this is not the case or the 
boundary conditions cannot be satisfied, either the system will not have a 
stationary state or it will be of type (III). This procedure can also be per- 
formed by starting with the Hamilton-Jacobi equation (4.14a) and then 
checking if (4.14b) is also satisfied. However, it is generally more difficult to 
find solutions of (4.14a) and if VuR ~ ~ 0, (4.14a) will in general not have a 
regular solution. (~6) We remark that Eq. (4.4) for the class (I) is a special 
case both of (4.14a) and (4.14b). 

(d) We illustrate the foregoing procedure with an example in two 
variables defined by the Langevin equation 

2 = y (4.15) 
~) = - - X  -~ ( b  - -  x 2 - -  ~ y 2 )  y _1_ ~ ( t )  

where ~(t) is  a Gaussian white noise with ( ~ ( t ) ~ ( t ' ) ) = 3 ( t - t )  and c~, b 
parameters, 0~<~< 1, - ~  < b < o c .  This model belongs to the class 
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studied in Refs. 17 and 8. For fixed cr and b < 0 it has a single stable attrac- 
tor which undergoes a Hopf  bifurcation at b = 0 to become a limit cycle for 
b > 0. For  e = 1 the limit cycle is a circle with radius b, and for cr < 1 it 
deforms into a more rectangular shape. For  e = 0 we get the stochastic van 
der Pol oscillator. We will determine for which cr the property ~?uR~ = 0 is 
satisfied (the noninvertibility of Q~V does not affect the procedure). The 
corresponding Poisson equation (4.14b) is 

�89 = - ( b  - x 2 - 3o~y 2) (4.16) 

which can be solved by the polynomial ansatz 

~ =  C20x2 }_ Co 2 y2_{_ C22x2y2_[_ C40x4 _1_ Co 4 y4 (4.17) 

Comparison of coefficients gives 

Co2 = - b ,  C22 = 1, Co4 = ~/2 (4.18) 

The coefficients C2o, C4o are still free parameters. We now take (4.17) with 
(4.18) and insert it into the Hamil ton-Jacobi  equation (4.14a) 

�89 y Ox~-I- [ - x + ( b - x Z - c ~ y 2 ) y ]  Oyq~= 0 (4.19) 

Comparison of coefficients gives [apar t  from relations coinciding with 
(4.18)3 

C20 ~- C02 , C40 = C22/2 (4.20) 

which fixes the free parameters. But one also gets (from a term in y3x) the 
relation 

C22 
Co4 = 2 (4.21) 

which is in contradiction with (4.18), unless ~ = 1. Therefore the condition 
~?~R ~ = 0 is only satisfied if cr = 1, in which case it is satisfied for all b and 
one has 

0 = - b ( x  2 + y2) + �89 + x~)2 (4.22) 

and R ' =  y, R z =  - x .  

The van der Pol model, e.g., has ~?uR~#0. An analogous discussion 
can be carried through for the more complicated models of Refs. 17 and 8. 
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(e) There is no connection between the property V~R~=0 and 
detailed balance db(2), i.e., one can have db(2) and V ,R  ~ r  and also 
V ~ R " = 0  without db(2). It is easy to verify that Ornstein-Uhlenbeck 
processes always satisfy V~R~= 0, but not necessarily db(2). (25) 

(f) The construction of models with V~R ~ = 0 for given ~, Q~' can be 
done as follows: from (3.3) we have 

V ,R  ~ = -�89 n" Vvq~- �89 ~'v V,Vvq~ + �89 "v 

= -�89 d"" V,,q~ (4.23) 

where we have used the antisymmetry of d "v. This expression can be made 
to vanish by an appropriate choice of d"L In a coordinate system where the 
divergence and the covariant divergence coincide we can take, e.g., a con- 
stant d ~" or one in which all the columns are divergence-free vectors (which 
are conditions independent of q~, Q~"). 

(g) A scalar function 6(q) is defined to be a Q-potential for the 
deterministic equation 

(t v= f~ (q )  (4.24) 

if it satisfies the following properties: ( i )~ is globally defined, single-valued 
C 2, bounded from below; (ii) stationary in the limit sets; (iii) there exists an 
r~(q) such that 

f~  = _ ! n ~  V~,  + r ~ (4.25) 2 ~  

r ~ V ~  = 0 (4.26) 

For positive definite Q~", q is then a Liapounov function for (4.24). 
If one adds a general white noise perturbation to Eq. (4.24) 

c) ~ = f~ (q )+  g~(q) ~i (4.27) 

the associated covariant Fokker-Planck equation is of the form (1.5) with 

Q~' = g~ g)'6 ~/ (4.28) 

h" = fv + l ~ (4.29) 

where 

l v = �89 

2 ~ .  is the holonomity tensor/9/ 

(4.30) 

-~k~;~ = V~. gk~ - V~ gk;~ (4.3l) 
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with 
gk~ = Q~  g~ (4.32) 

A model is called holonomous if 3k,~.=0, which implies f V = h  v (this 
includes, e.g., all models in which Q"~ is constant in some coordinate 
system). In this case, if the condition V~R" = 0 is satisfied, then q~ is a Q- 
potential for the deterministic equation (4.24). 

(h) Thermodynamic equilibrium is described by stationary states 
that must satisfy some supplementary conditions: 

(i) They must be in detailed balance with respect to a physically 
given time-reversal transformation. 

(ii) ~b is associated with the entropy ~ and P is given by 

P = e (1/~B/~ (4.33) 

where k~ is the Boltzmann constant. (13'2~ 
(iii) ~b is a Liapounov function. 

The comparison of these conditions with property g) and mainly with 
Eqs. (5.2), (5.3) of the next section implies that systems in equilibrium (if 
described by a holonomous model) must satisfy V , R  ~ = 0. More precisely, 
even in this case the noncovariant probability P will be of the form [see 
(1.3), (5.2)] 

P =  IQI-i/2 e (1/,~ (4.34) 

i.e., it will be of the form (4.23) only in coordinate systems in which the 
volume element I QI 1/2 is constant. The identification with entropy can only 
be made in such coordinates. 

5. L A R G E -  A N D  S M A L L - N O I S E  A S Y M P T O T I C S  

In this section we will discuss the dependence of the stationary state 
on the strength of the noise t/, which was introduced by setting Q~V = n~UV. 
We want to study the dependence on r/ of ~b(q, r/) and R~(q, tl). In general 
h v will also depend on r/, owing to the noise-induced drift l v, according to 
Eqs. (4.29)-(4.32): 

h~(q, rl) = fU(q) + tlT~(q) (5.1) 

In the holonomous case, h v is independent of r/ and we can prove the 
following properties: 

(i) q~ is of the form (unnormalized) 
1 

~(q, t / )=~  qS(q) (5.2) 
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if and only if 

V,R~'(q, ~/= 1)= 0 (5.3) 

(ii) V,RU(q, r / l )=0  for one ~/1 implies V~,R"(q, r / )=0  for all ~/. 
(iii) R~'(q, t l l )=0 for one ql implies R"(q, t l )=0 for all ~/. R"(q, tl) is 

independent of r/if and only if V,R~'(q, tl) = O. 
(ii) and (iii) imply that in the holonomous case the classification (4.1)- 

(4.3) is independent of the strength of the fluctuations ~/. For a discussion of 
the nonholonomous case see Ref. 21. 

Inserting (5.2) into (3.1a) one sees that R" (and therefore VuR") is 
independent of t/. Then (3.1b) implies that V,q~R" = 0 =VuR"  for all ~/. 

Conversely, Vt, R~'(q , t /= 1)=  0 implies that q~(q, t /= 1) satisfies 
simultaneously (4.14a) and (4.14b): 

• V~ q] V~ q5 + h ~ Vu q5 = 0 

�89 V~V~% +V~h ~ = 0 

(5.4a) 

(5.4b) 

where we have set O(q) = q~(q, ~/= 1 ). We define 

(5.5) 

and insert it into (5.4): 

v j  + h v j )  = o (5.6a) 

(5.6b) 

This implies that ~ is a solution of the FP equation (4.13) for all ~/. (ii) and 
(iii) follow immediately from the above argument setting 

q~(q, r/) = r/~ ~(q, r/1 ) (5.7) 

By inserting (5.2) into the FP equation (4.13) 

l I l ^ , v  _ h~ ] 1 ^  
(5.8) 

we see that for holonomous systems with V~R~=0 the stationary FP 
equation reduces to the Hamilton-Jacobi equation (4.14a) in the small- 
noise limit (q-~0)  and to the Poisson equation (4.14b) in the large-noise 
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limit (r/--+ oo). For systems with V ~ R ~ 0  but small enough, one would 
expect some similar behavior, or at least asymptotically for small and large 
noise. 

5.1. Smal l -Noise  Asymptot ics  

We consider models in which Q~ is constant in some coordinate 
system (i.e., flat metric, which implies holonomity). Then, under some 
regularity conditions on h v, q~ has been shown (22'23) to have for small noise 
the asymptotic form (Ref. 22, Theorems 6.4.3, 4.4.3, 4.3.1) 

q~(q, ~)= 1 (o(q) + O(q, ~1) (5.9) 

(plus normalization) with 

lim tlO(q, ~)=0 (5.10) 
r /~0  

If 0(q) is differentiable (C2), V,0, V,V~0 satisfy 

lira t/V,O(q, tl)=0 (5.1 la) 
r /~0  

lira ~/VuVv0(q, t/) = 0 (5.1 lb) 
r /~0  

and q5 satisfies the Hamilton-Jacobi equation (5.4a). This implies that q5 
will be a Q-potential for the deterministic equation (4.24). However, in 
general q5 will not be differentiable and will not be a solution of (5.4a). 
Indeed, R. Graham and R. T61 have shown, (16) through the study of 
integrability properties of the associated Hamiltonian system, that this will 
be the generic case. We remark that when ~ is differentiable, Eqs. 
(5.9) (5.11) lead to finite expressions for the drift velocity R" and for V,R": 

RV(q, t / ~  0) = h v + �89 ~v V~q~ (5.12) 

V~RV(q, q ~ 0)=V~hV + �89 u~ V~Vv q5 (5.13) 

In the cases where ~b is not C 2, the limit r / ~  0 is still well behaved (22) and 
we expect similar expressions, but instead of V, qh, V~V~q~ we have to set 
functions ~b~ 1) # V~ ~b, ~l/J (2) # V~V~ q5 defined by the asymptotic expansions 

1 
V ~ ( q ,  t/) = ~  ~b~l)(q)+ O~')(q, ~) (5.14a) 

1 (2) V~V~q~(q, t / )=~  tp(~2)(q) + 0,~ (q, 1/) (5.14b) 



Fokker-Planck Models and Noise Asymptotics 161 

with 

which leads 

lim tlO~)(q, r/) = 0 (5.14c) 
r /~O 

lim tlO(J)(q, r/) = 0 (5.14d) 
r /~O 

R~(q, r/-+ 0) = h ~ +  2y-~l/~#v~/l(1)'/'v ( 5 . 1 5 )  

V,R~(q, ~/--+ 0) = V~h ~ -a- 7~ cS,v,/,(2),e~ (5.16) 

i.e., still well-defined finite expressions for R ", V~R u. If we assume the form 
(5.14), ~,()) will satisfy 

• (1)'1'(1) -1- h~'~9 ~ 1) = 0 (5.17) 2~- ~t 'Fv 

which is similar to the Hamilton-Jacobi equation (5.4a) but ~,~1) is not the 
gradient of any function q3. 

It is easy to construct models with a q3 having all the regularity 
properties and satisfying the Hamilton-Jacobi equation (5.4a), but with 
V~,R ~ # 0, i.e., with 

(p(q)#~(q, t /= 1) (5.18) 

d(q, tl)=10(q) + O(q, tl) (5.19) 
t/ 

We can use the ideas of Section3, Eqs. (3.2)-(3.5) with a slight 
modification. We take a Q~ and a q5 satisfying the regularity and boundary 
conditions and define 

5~ = �89 V~ 0 

where we have chosen any antisymmetric 2/vv such that 

Vvd TM V~q~ # 0 

which is easy to find. Then ~ and F" will satisfy 

V~ q3 F" = 0 

but 

V~ F ~ # 0 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

822/40/1-2-11 
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i.e., if we define a drift 

h ~ = F" +/3" (5.25) 

then q3(q) will satisfy the Hamilton Jacobi equation (5.4a), but it will not 
satisfy the Fokker-Planck equation because of (5.24). We finally remark 
that the exact q~(q, ~/) always satisfies an equation of Hamilton-Jacobi type, 
as one sees by multiplying (3.1a) by V~q~: 

�89 V , r 1 6 2  + [h" - R ~'3 V~,r 0 (5.26) 

5.2. Large-Noise Asyrnptot ics 

For the large-noise asymptotics t / ~  oo we make the following ansatz, 
suggested by the discussion of Eq. (5.8): 

~(q, rl ) = 1 0 ( q )  + O(q, 1"/) (5.27) 

Assuming differentiability and 

1 
lim :- O(q, t/) = 0 (5.28a) 

1 
lim -VvO(q,  r / )=0  (5.28b) 

lira 1 V v V g ( q  ' t/) = 0 (5.28c) 
t / ~ o O  

we get in leading order the Poisson equation 

• VuVvq 5 =  - V ,  h~ (5.29) 

With this ansatz the large-noise asymptotics is better behaved than the 
small-noise one since the Poisson equation has a smooth solution in the 
general case. 

6. T I M E - D E P E N D E N T  PROPERTIES 

In this section we will discuss how R" affects the time-dependent 
behavior of the system. We write the covariant Fokker-Planck equation 
(1.5) as 

8,S,(q) = Lr(q)  St(q) (6.1) 



Fokker-Planck Models and Noise Asymptotics 163 

where Lr(q) is the operator defined by 

LF(q) f (q )  = -V.(hU(q) f (q ) )  + �89 V~,V~f(q) (6.2) 

LF will be always applied on scalar functions. We define an associated 
operator, using the stationary q~ 

L =- e(~/2)6LF e (1/2)~ (6.3) 

We assume that L has a purely discrete spectrum, and write S, formally in 
an eigenvunction expansion (6) 

S,(q) = Oo(q) ~ e-~"Sp~(q) (6.4) 
i 

where ~ ,  2i are the eigenfunctions and eigenvalues of L. It can be shown (61 
that (when a stationary state exists) the real part of the 2~ is always 
positive. In general L will not be hermitic, but it can be decomposed in an 
hermitic and an anti-hermitic part 

which are given by (6'7) 

with 

L =  LH + L A (6.5) 

L .  = �89 V . V ~ -  V(q) (6.6) 

LA = --�89 ~ -- R~V. (6.7) 

V(q) = _!t~.v v v -.-v6+ Q vV  Vv6 
= IQ,v D ,D v + 1V,/~, (6.8) 

L A is determined by R" and LH by /)" and Q~V. We consider two special 
cases: 

(1) LA =0;  i.e., L is hermitic. Then all the eigenvalues 2i are real and 
positive and therefore the dynamics is purely diffusive. The form (6.7) 
implies (6'7) that this is the case if and only if R" = 0, or equivalently, if the 
stationary state is in detailed balance db(1) [as follows from the discussion 
of Eq. (4.9)]. 

(2) The next simple case is when LA # 0 but [LH, LA] = 0. Then L is 
a normal operator ([L, L § =0,  which allows, e.g., to use the spectral 
decomposition). The dynamics has a diffusive and a convective part but 
they do not interfere with each other. We can show that the commutativity 
of LH and LA depends only on R" and Q~ (i.e., not on /5"  or ~). 
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A necessary and sufficient condition for [LH, LA ] = 0 is that the ten- 
sor defined by Q~V VvR~ is antisymmetric 

Q~,V V uR  ~. = _QX~ VuR F, (6.9) 

and that 

M , v R  ~ = 0 (6.10) 

where M~v is the Ricci tensor associated with the metric QUV(q).(241 

The proof of this statement is given in Ref. 25. We remark that for a 
fiat metric (i.e., Q"~ is constant in some coordinate system), (6.10) is 
automatically satisfied. In the special case Q~V=cs~v, the condition (6.9) 
implies V~R ~ = 0 (but not the other way around). In general the conditions 
(6.9) and V~R ~= 0 are independent of each other, in the sense that there 
are systems satisfying one of them but not the other. 

Suppose that we construct a model as described in Section 3 by giving 
and Q~V and setting R ~ = 0. The time evolution is determined by the real 

positive eigenvalues 2~ and eigenfunctions ~pj. It will be a purely diffusive 
relaxation. If one then adds a term R ~ to the drift such that (6.9) and (6.10) 
are satisfied, the dynamics will be determined by L = L H + L  ~ with 
[LH,  L A] = O. L H and L A will have the eigenfunctions in common and the 
eigenvalues of L will be 2; = 2~ + h A, with purely imaginary ;t) ~. The eigen- 
functions and the real part of the eigenvalues will not be changed. The con- 
vective behavior induced by R ~ will be superposed to the relaxation 
without modifying it; they are independent from each other. 
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